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Abstract

The aim of the present paper was to contribute to understanding the origin and effects of porosity in aluminum die-

castings by characterizing the distribution and geometry of the porosity. It also seeks to develop a predictive model for

microporosity formation during solidification through an analysis of the alloy solidification path, the presence of gas

dissolved in the molten metal and the flow of liquid metal through the mushy zone. The finite element method was used

for solving porosity formation problem jointly with the problem for heat and mass transfer.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Porosity is a common feature of metal castings, which

mayormaynot be harmful dependingon its location, size,

and connectivity. In most cases unsound castings will

display diminished mechanical properties, leakage in

parts intended for hydraulic applications and may cause

unacceptable roughness in machined surfaces. For some

applications, small pores within the interior of a part may

not interfere with the part�s function. In certain cases

porosity may be advantageous with respect to the desired

weight reduction. Understanding the location and ge-

ometry of porosity may thus be critical.

The major sources of porosity in cast parts are the

reduction in volume which occurs when a liquid metal

solidifies, the presence of gas dissolved in the molten

metal, and air trapped within the metal during filling of

the mold [1–3].

If the liquid metal fails to feed the shrinkage pores

could be formed in the casting. Campbell [4] gave an ex-

planation of the feeding mechanisms during alloy solidi-

fication. He suggested that interdendritic feeding is the

one, which could to the porosity formation in castings.

With the progress of solidification a thermodynamic

potential for development of gas bubbles in the inter-

dendritic space may arise. As the solubility of the solid

part is less, part of the gas will be rejected from the

growing dendrites into the interdendritic liquid during

solidification [3]. If the gas content in the interdendritic

liquid is high enough so that its pressure exceeds the sum

of the local pressure and the surface tension, gas holes

will be formed [2].

Concerning the modeling of porosity formation, Pi-

wonka and Flemings [5] employed the pressure drop

formula for a laminar flow in the pipe to predict the pore

size. Davies [6], and Moosbrugger and Berry [7] used a

similar mathematical model to calculate feeding ranges.

In their modeling, the solidus temperature was calcu-

lated instead of the actual flow velocity. Prasnna Kumar

et al. [8] used the FEM, coupling with several experi-

mentally determined coefficients, to predict the feeding

efficiency. Kubo and Pehlke [9] presented a model which

includes both shrinkage and gas porosity. Pourier et al.

[10] established a thermodynamic model, which was able

to predict the formation and the amount of porosity in

directionally solidified Al–4.5Cu alloy. In their model

both shrinkage and gas porosities are considered.

For the above-discussed models, the fluid flow in the

mushy zone either was not actually calculated [6–8] or

was calculated but based on highly simplified assump-

tions [5,10], or was decoupled from energy equation.

Modeling of microporosity requires an accurate de-

scription of the pressure at each point in the liquid in the

mushy zone of a casting. The pressure varies due to the

fluid flow required to feed the solidification shrinkage. A

fluid flow calculation is therefore necessary.
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Because of the complex geometry and the combina-

tion of thin and thick parts in castings, the programs

based on finite differences method (FDM) [9,11] or

control volume methods are encountering with difficul-

ties in the approximation of the boundary geometry and

the interpolation of boundary conditions. The FEM

method has been very successful in many areas of con-

tinuous mechanics, where it is now the principal com-

putational method. It has proved its versatility in the

treatment of linear self-adjoint problems over compli-

cated geometry.

The objectives of the present study are the develop-

ment of mathematical model and computer programs

for numerical simulation of the nucleation, distribution,

geometry and amount of porosity. The FEM was used

to provide a more rigorous numerical solution of the

pressure in the mushy zone of a casting and flow velocity

during solidification.

2. Mathematical formulation

The model describing the porosity formation includes

both shrinkage and gas porosity.

Often porosity defects are observed between sec-

ondary dendrite arms and at grain boundaries. These

types of porosity are considered to form by gas rejection

into the liquid during solidification. This porosity arises

because the solubility of the gas is less in solid than in

the liquid metal, so that some of the hydrogen is expelled

into the interdendritic liquid. If the concentration of gas

in the interdendritic liquid rises to a value sufficient to

exceed the sum of local pressure within the interdendritic

liquid and the excess pressure attributed to the surface

tension, then microporosity results.

At first gas porosity nucleates at roots of secondary

DAS. The free energy change on formation of porosity

is [9]

DE ¼ V ðP � PgÞ þ A1rSG þ A2rLG � A1rSL ð1Þ

where V is the volume of porosity, Pg and P are gas

pressure and metal pressure, A1 and A2 the areas of solid–
gas and liquid–gas interface, and rSG; rLG and rSL are
solid–gas, liquid–gas and solid–liquid surface tensions

(interface energies). When gas porosity forms at equi-

librium DE is zero. The first term on the right side rep-

resents the free energy change in going from liquid to gas

porosity. The other terms represent the free energy

change necessary to form the gas porosity surface. In

homogeneous nucleation, the first term is required to be a

very large negative value to overcome the effect of the gas

porosity surface energy. In this case, however, since the

effect of surface energy is reduced by the last term, a large

negative pressure difference is not required. With the

progress of solidification, the gas dissolved in the liquid

increases and porosity grows. Since the radius of porosity

becomes large enough to decrease the effects of interfacial

energy, the porosity can detach from the dendrite. Fur-

thermore at later stage of solidification the neighboring

dendrites collide, so that the interdendritic feeding be-

comes difficult. At that point the porosity is considered to

grow to compensate for the solidification shrinkage.

The model describing the shrinkage porosity is based

on the pressure drop evaluation in the interdendritic

liquid. The local pressure P in the two-phased region is

calculated from a system of two differential equations––

continuity equation and Darcy law [9].

From a mass balance for a volume element, the

continuity equation requires

qS
qL

�
� 1

�
ofL
ot

�r:ðfLuÞ þ
ofP
ot

¼ 0 ð2Þ

The first term on the left side is the amount of

shrinkage, the second term is the amount of liquid input

by interdendritic flow. The last term is the amount of

porosity growth. The equation indicates that the

shrinkage during solidification is compensated by in-

terdendritic flow and the growth of porosity.

From many experiments is known that the inter-

dendritic flow encounters resistance, which is similar to

flow in porous medium. The motion equation describing

interdendritic flow can be expressed from Darcy�s law as

u ¼ � k
mfL

ðrP þ qgÞ ð3Þ

After substituting the velocity of the interdendritic

mass feeding, described by the Darcy�s law, into the

continuity equation the following equation describing

the local pressure in the mushy zone is obtained

kDP þrk:rP þ qrk:gþ l
qS
qL

�
� 1

�
ofL
ot

þ l
ofP
ot

¼ 0

ð4Þ

The following boundary conditions are imposed for

this equation: along the liquidus isotherm the pressure is

equal to the pressure in the molten metal and the liquid

metal flows to feed shrinkage

u ¼ qS
qL

�
� 1

�
uL

where uL is the liquid isotherm velocity.

It is necessary to characterize the dendritic structure

during solidification in order to assign the permeability

for flow of the interdendritic liquid and in order to es-

timate gas bubble radii.

It is assumed that a gas pore is stable (will not shrink)

provided that the supersaturation, or excess pressure, in

the gas is sufficiently great to overcome the surface

tension when the gas phase has a radius that is small

enough to fit in the interdendritic space. The above re-

quirement is expressed as [10]
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Pg � P ¼ rGL
1

r1

�
þ 1

r2

�
ð5Þ

where r1 and r2 are the principal radii of curvature.
The principal radii of curvature depend upon the

volume of the interdendritic space and its geometry and

the contact angle at the gas–solid–liquid junction. Since

the contact angle is approximately zero the bubble or the

bubble cap of the gas phase of minimum excess pressure

fits in the local interdendritic space such that 2r1 would
be equal to the width of the space.

The dimensions of the interdendritic space between

the primary dendrite arms are greater than the inter-

dendritic spaces between the secondary dendritic arms;

thus less excess pressure would be required for the gas

phase existing between the primary than in the second-

ary. Hence, the primary dendrite arm spacing and the

arrangement of the primary dendrite arms are more

important than the geometrical properties of the sec-

ondary. Based upon dendritic arrangement is shown [10]

that the interdendritic space is a groove of width

d ¼ fLd1=2. A bubble with minimum excess pressure is

one, which fits in the groove and its principal radii of

curvature are r1 ¼ d=2 and r2 ¼ 1. Then the minimum

excess pressure is

Pg � P ¼ 4rGL
fLd1

ð6Þ

The primary dendrite arm spacing of an alloy de-

pends on the growth conditions and is expressed in the

form

d1 ¼ AGa
LR

b ð7Þ

where GL is the thermal gradient in front of the den-

drites, R is the solidification rate and A; a; b are con-

stants, which can be determined empirically.

The permeability k0 is calculated from the liquid

fraction fL and dendrite cell size d following Blake–

Kozeney equation

k0 ¼
f 3Ld

2

180ð1� fLÞ2
ð8Þ

The gas pressure is calculated from Eq. (6) assuming

the diameter of porosity first being the width of the

interdendritic space between the arms of primary

Fig. 1. Calculated evolution of the temperature field (�C) during cooling and solidification of a car wheel.
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dendrites. A new amount of porosity is calculated from

the conservation equation for gas content. Assuming

complete equilibrium, the conservation equation for gas

content is

½H0	 ¼ ð1� fLÞ½HS	 þ fL½HL	 þ a
PgfP
T

ð9Þ

The left side is the initial hydrogen content ½H0	. The
first, second and the third terms on the right are the

amounts of hydrogen in the solid ½HS	, liquid ½HL	 and
porosity fraction fP. The Sievert�s law for diatomic gas

expresses the hydrogen content in the solid and liquid

½HS	 ¼ KSH
ffiffiffiffiffi
Pg

p
; ½HL	 ¼ KLH

ffiffiffiffiffi
Pg

p
ð10Þ

The porosity problem is solved jointly with the

problem for heat and mass transfer. The heat balance

equation is expressed as

qc
oT
ot

þ fLqcu:rT ¼ kDT � qL
ofL
ot

ð11Þ

where q ¼ fLqL þ fSqS is the average density of liquid
and solid, qL and qS are the densities for the fully liquid
and solid regions, respectively. Here uðt; xÞ is the velocity
of the interdendritic flow, c is the heat capacity, k is the
heat conductivity and L is the latent heat of crystalli-

zation. The temperature gradients are small in the

mushy zone and the liquid fraction is relatively small,

and therefore, the temperature terms for interdendritic

flow can be neglected.

To solve this equation the relationship between

the liquid fraction and temperature is needed. Using the

Scheil model of solidification (complete mixing in the

liquid, no diffusion in the solid), the liquid fraction is

expressed as

fL ¼ T � Tm
TL � Tm

� �1=ðk0�1Þ

ð12Þ

where Tm is the melting temperature of the pure element,
equilibrium segregation coefficient k0 ¼ CS=CL.

Fig. 2. Calculated evolution of metal pressure (bar) distribution in the mushy zone during solidification of a car wheel for differential

pressure of 1 bar.
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3. FEM formulation of the interdendritic flow problem

The finite element approximation is based on the

weak form of the equation describing the pressure field

in the mushy zone, which may be written as [12,13]Z
V

/ kDP
�

þrk:rP þ qrk:gþ l
qS
qL

�
� 1

�
ofL
ot

þ l
ofP
ot

�
dV ¼ 0 ð13Þ

where V is the volume of the mushy zone of casting. The

function / is required to be measurable in Sobolev sense.
From a computational viewpoint a more useful weak

form is the Galerkin form, which is derived from the

above by the use of Stock�s theorem. This form requires

minimum continuity of the solutions P .Z
V
kr/:rP dv�

Z
S

/krP :nds�
Z
V

/ qrk:g
�

þ l
qS
qL

�
� 1

�
ofL
ot

þ l
ofP
ot

�
dv ¼ 0 ð14Þ

where the integration in s is over the boundary S of V
and n is outward normal vector.

The boundary conditions on the surface are incor-

porated by the replacement of krP by kG� mfLu (from
Darcy�s law).
We approximate the region V by a set of finite ele-

ments, in particular a set of 8––node elements in the 3-D

case, and introduce parametric approximations, which

map these elements onto a standard cube. The subdivi-

sion of the domain V into a set of finite elements reduces

the original problem to one which is finite dimensional

and the values of the pressure are calculated only at the

nodes of the elements. In terms of basic function ex-

pansion the pressure field is taken to be of the form

P ffi ePP ¼
XN
k¼1

/kðxÞPk ð15Þ

The derivatives of ePP are calculated in the form

oePP
oxj

¼
XN
k¼1

o/k

oxj
Pk ð16Þ

Fig. 3. Calculated evolution of the distribution and amount of porosity (%) and interdendritic flow velocities during solidification of a

car wheel for differential pressure of 1 bar.
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where N is the number of FE mesh nodes and Pk are the
nodal values of P ; /k are the basic functions, which are

assumed to form a complete set of functions over the

castings volume. The interpolating functions /k must be

chosen to preserve continuity of pressure between the

elements because of the first order derivatives. In this

work /k are chosen to be a set of bilinear pyramid

functions

/kðplÞ ¼ dk
l ¼

1 k ¼ l
0 k 6¼ l



ð17Þ

The Galerkin approximation satisfies

Z
V
kr/k :rePP dvþ Z

S

/kmfLu:nds�
Z
S

/kkG:nds

�
Z
V

/k qrk:g
�

þ l
qS
qL

�
� 1

�
ofL
ot

þ l
ofP
ot

�
dv ¼ 0

Substituting the derivatives into the Galerkin ap-

proximation we obtain a system of linear equations

XN
l¼1

Z
V
kr/k :r/l dv

� �
Pl þ

Z
S

/kmfLu:nds�
Z
S

/kkG:nds

�
Z
V

/k qrk:g
�

þ l
qS
qL

�
� 1

�
ofL
ot

þ l
ofP
ot

�
dv ¼ 0

which can be solved for the unknown nodal values Pk of
the pressure field.

4. Results and discussion

Detailed solutions are given for distribution and

amount of porosity in car wheel produced by counter

pressure casting (CPC) method [14].

First the temperature and change of the solid fraction

are calculated from heat balance equation. Finite ele-

ment method (FEM) based computer program was de-

veloped for solving heat transfer and crystallization

problem [15]. If the volume element is in the mushy

Fig. 4. Calculated evolution of metal pressure (bar) distribution in the mushy zone during solidification of a car wheel for differential

pressure of 5 bar.
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zone, the variables are calculated in the following

manner.

When no porosity has formed, the metal pressure P
is calculated from the Eq. (4) describing the local pres-

sure in the mushy zone by FEM, assuming no occur-

rence of porosity. Then the gas pressure is calculated as

the minimum excess pressure required so that the gas

bubble is stable Eq. (6), assuming the diameter of po-

rosity being the interdendritic space width. Subse-

quently, a new amount of porosity is calculated from gas

balance equation Eq. (9) and Sievert�s law Eq. (10).

When the porosity has already formed, the metal and

gas pressure are calculated using the amount of porosity

before the current time Dt. The procedure described
above is repeated over each volume element in the

mushy zone and each time step until the required time is

reached.

An important parameter influencing on the porosity

formation in a CPC unit is the differential pressure ap-

plied in the molten metal. We investigated the effect of

the pressure, applied in the melt, in two cases––one with

differential pressure of 1 bar and the second––with 5

bars.

The solutions include the temperature distribution in

casting, the velocity of interdendritic flow, the amount

of porosity and pressure drop in casting, shown as

graphical output available to users of the computer code

The calculated evolution of the temperature fields

and pressure drop in the casting for differential pressure

of 1 bar are shown in Figs. 1 and 2. The velocity of the

interdendritic flow and the distribution and amount

of porosity are presented on Fig. 3. The results of cal-

culations in this case indicate that width of the mushy

zone in the rim area is large and the pressure cannot

Fig. 5. Calculated evolution of the distribution and amount of porosity (%) and interdendritic flow velocities during solidification of a

car wheel for differential pressure of 5 bar.
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overcome the resistance to liquid feeding. The pressure

in this area drops to zero, the feeding is ceased and the

shrinkage during solidification is compensated by po-

rosity growth. Severe porosity defects occur in this case

and the volume fraction of porosity exceeds 3%.

The evolution of the pressure field, the interdendritic

flow velocity and the distribution and amount of po-

rosity in the mushy zone for differential pressure of 5 bar

and for the same cooling conditions are shown in Figs. 4

and 5. In this case the higher pressure, applied in the

melt, increases the interdendritic liquid feeding com-

pensating the solidification shrinkage. Hence, the higher

interdendritic fluid flow decreases the porosity forma-

tion in the casting. The predicted microporosity is con-

sistent with the experimental data.

The present model provides a predictive tool for

microporosity formation, which accounts for the de-

tailed effects of alloy solidification behavior without the

need for empirical criteria containing numerical pa-

rameters, which must be evaluated for each alloy.
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